February 14, 2012 Dear SUBJECT: Analysis Results for Water Supply at Marquette County, Michigan , Humboldt Township, The United States Environmental Protection Agency (EPA) collected a sample from your private water supply on November 1, 2011. Attached is a tabulation of the sample analysis results. The EPA sampled your water supply to assess if past activities at the nearby Humboldt Mine and Mill site had affected groundwater and individual water supplies in the area. The concentrations of inorganic substances and metals detected in the water supply samples were below established federal and state drinking water standards and health concern levels, and were similar to groundwater quality generally found in Central Marquette County. While it is entirely normal within the region, it is noteworthy that manganese was detected at a concentration higher than the secondary drinking water standard, 50 micrograms per liter (ug/l). The secondary standard is not a health-risk standard. It is an aesthetic water quality standard. The sample from your water supply contained manganese at 122 ug/l. Water containing manganese at concentrations above the secondary standard may cause staining of fixtures and laundry, and may have objectionable turbidity, color, and odor. Even though there is no indication your water supply has been impacted, the EPA and the Michigan Department of Environmental Quality (DEQ) believe a second sample set is needed. The EPA will contact you regarding a second access agreement and sample collection date. Analysis of the follow-up samples will be performed for some inorganic substances not previously researched and for some organic chemicals at a lower laboratory detection limit. The EPA and the DEQ appreciate your cooperation in these investigations. If you have questions about the sampling efforts, please contact Nuria Muñiz at (312-886-4439). If you have questions about the analysis results, please contact Chuck Thomas, DEQ by phone at 906-346-8534 or by email at thomasc3@michigan.gov. Sincerely, Nuria Muñiz U.S. Environmental Protection Agency Superfund Division Region 5, Chicago IL. Charles H. Thomas, P.G. Michigan Dept. of Environmental Quality Resource Management Division Mand of Panas Upper Peninsula District Office Enclosure cc: Ms. Dana DeBruyn, DEQ Mr. Steve Harrington, DEQ Mr. Patrick L. Jacuzzo, Marquette County Health Dept. Mr. Don Deblasio, EPA Mr. Mark Johnson, ATSDR | Analyte | MCL (ug/L) | HMDW-007 | | |------------------------------|------------|-------------|--| | Matrix | , , , , , | Groundwater | | | Cyanide (ug/L) | | | | | Cyanide | 200 | 7.5 J- | | | Metals (ug/L) | | | | | Aluminum | | 200 U | | | Antimony | 6 | 60 U | | | Arsenic | 10 | 8.5 J | | | Barium | 2000 | 20 J | | | Beryllium | 4 | 5 U | | | Cadmium | 5 | 5 U | | | Calcium | | 23400 | | | Chromium | 100 | 10 U | | | Cobalt | | 50 U | | | Copper | 1300 | 25 UJ | | | Iron | | 146 | | | Lead | 15 | 10 UJ | | | Magnesium | | 7650 | | | Manganese | | 122 | | | Mercury | 2 | 0.2 U | | | Nickel | | 40 U | | | Potassium | | 5000 U | | | Selenium | 50 | 35 UJ | | | Silver | | 10 U | | | Sodium | | 5000 U | | | Thallium | 2 | 25 U | | | Vanadium | | 50 U | | | Zinc | | 60 U | | | PCBs (ug/L) | 2 | | | | Aroclor-1016 | | 1 U | | | Aroclor-1221 | | 1 U | | | Aroclor-1232 | | <u>1 U</u> | | | Aroclor-1242 | | 1 U | | | Aroclor-1248 | | 1 U | | | Aroclor-1254 | | 1 U | | | Aroclor-1260 | | <u> 1 U</u> | | | Aroclor-1262 | | <u>1U</u> | | | Aroclor-1268 | | 1 U | | | SVOCs (ug/L) | | | | | 1,1'-Biphenyl | | <u>5 U</u> | | | 1,2,4,5-Tetrachlorobenzene | | 5 U | | | 2,2'-Oxybis(1-chloropropane) | | 5 U | | | 2,3,4,6-Tetrachlorophenol | | 5 U | | | 2,4,5-Trichlorophenol | | 5 U | | | 2,4,6-Trichlorophenol | | <u>5 U</u> | | | 2,4-Dichlorophenol | | 5 U | | | 2,4-Dimethylphenol | | 5 U | | | O 4 Dinitranhanal | | 10.11 | |----------------------------|-----|-------| | 2,4-Dinitrophenol | | 10 U | | 2,4-Dinitrotoluene | | 5 U | | 2,6-Dinitrotoluene | | 5 U | | 2-Chloronaphthalene | | 5 U | | 2-Chlorophenol | | 5 U | | SVOCs (ug/L) Continued | | | | 2-Methylnaphthalene | | 5 U | | 2-Methylphenol | | 5 U | | 2-Nitroaniline | | 10 U | | 2-Nitrophenol | | 5 U | | 3,3'-Dichlorobenzidine | | 5 U | | 3-Nitroaniline | | 10 U | | 4,6-Dinitro-2-methylphenol | | 10 U | | 4-Bromophenyl-phenylether | | 5 U | | 4-Chloro-3-methylphenol | | 5 U | | 4-Chloroaniline | | 5 U | | 4-Chlorophenyl-phenylether | | 5 U | | 4-Methylphenol | | 5 U | | 4-Nitroaniline | | 10 U | | 4-Nitrophenol | | 10 U | | Acenaphthene | | 5 U | | Acenaphthylene | | 5 U | | Acetophenone | | 5 U | | Anthracene | | 5 U | | Atrazine | 3 | 5 U | | Benzaldehyde | | 5 U | | Benzo(a)anthracene | | 5 U | | Benzo(a)pyrene | 0.2 | 5 U | | Benzo(b)fluoranthene | | 5 U | | Benzo(g,h,i)perylene | | 5 U | | Benzo(k)fluoranthene | | 5 U | | Bis(2-chloroethoxy)methane | | 5 U | | Bis(2-chloroethyl)ether | | 5 U | | Bis(2-ethylhexyl)phthalate | 6 | 25 U | | Butylbenzylphthalate | 0 | 5 U | | Caprolactam | | 5 U | | Carbazole | | 5 U | | | | 5 U | | Chrysene | | 5 U | | Dibenzo(a,h)anthracene | | 5 U | | Dibenzofuran | | | | Diethylphthalate | | 5 U | | Dimethylphthalate | | 5 U | | Di-n-butylphthalate | | 5 U | | Di-n-octylphthalate | | 5 U | | Fluoranthene | | 5 U | | Fluorene | | 5 U | | Hexachlorobenzene | 1 | 5 UJ | | Hexachlorobutadiene | | 5 U | | Hexachlorocyclopentadiene | 50 | 5 U | | Hexachloroethane | | 5 U | | Indeno(1,2,3-cd)pyrene | į l | 5 U | |----------------------------|-----|-------| | Isophorone | | 5 U | | Naphthalene | | 5 U | | Nitrobenzene | | 5 U | | N-Nitroso-di-n-propylamine | | 5 U | | N-Nitrosodiphenylamine | | 5 U | | Pentachlorophenol | 1 | 10 R | | Phenanthrene | | . 5 U | | Phenol | | 5 U | | Pyrene | | 5 U | VOCs (ua/L) | VOCs (ug/L) | | | |--|-------|------------| | 1,1,1-Trichloroethane | 200 | 5 <u>U</u> | | 1,1,2,2-Tetrachloroethane | | 5 U | | 1,1,2-Trichloro-1,2,2-trifluoroethane | | 5 U | | 1,1,2-Trichloroethane | 5 | 5 U | | 1,1-Dichloroethane | | 5 U | | 1,1-Dichloroethene | 7 | 5 U | | 1,2,3-Trichlorobenzene | | 5 U | | 1,2,4-Trichlorobenzene | 70 | 5 U | | 1,2-Dibromo-3-chloropropane | | 5 U | | 1,2-Dibromoethane | | 5 U | | 1,2-Dichlorobenzene | 600 | 5 U | | 1,2-Dichloroethane | 5 | 5 U | | 1,2-Dichloropropane | 5 | 5 U | | 1,3-Dichlorobenzene | | 5 U | | 1,4-Dichlorobenzene | 75 | 5 U | | 1,4-Dioxane | | 100 R | | 2-Butanone | | 10 U | | 2-Hexanone | | 10 U | | 4-Methyl-2-Pentanone | | 10 U | | Acetone | | 10 U | | Benzene | 5 | 5 U | | Bromochloromethane | | 5 U | | Bromodichloromethane | | 5 U | | Bromoform | | 5 U | | Bromomethane | | 5 U | | Carbon disulfide | | 5 U | | Carbon distillide Carbon tetrachloride | 5 | 5 U | | Chlorobenzene | 100 | 5 U | | Chloroethane | 100 | 5 U | | Chloroform | | 5 U | | Chloromethane | | 5 U | | cis-1,2-Dichloroethene | 70 | 5 U | | | 70 | 5 U | | cis-1,3-Dichloropropene | | 5 U | | Cyclohexane Dibromochloromethane | | 5 U | | | | 5 U | | Dichlorodifluoromethane | 700 | 5 U | | Ethylbenzene | 700 | 5 U | | Isopropylbenzene | | | | m,p-Xylene | | 5 U | | Methyl acetate | | 5 U | | Methyl tert-butyl ether | | 5 U | | Methylcyclohexane | | 5 U | | Methylene chloride | 10000 | 10 U | | o-Xylene | 10000 | 5 U | | Styrene | 100 | 5 U | | Tetrachloroethene | 5 | 5 U | | Toluene | 1000 | 5 U | | trans-1,2-Dichloroethene | 100 | 5 U | | trans-1,3-Dichloropropene | | 5 U | | Trichloroethene | 5 | 5 U | |------------------------|---|-----| | Trichlorofluoromethane | | 5 U | | Vinyl chloride | 2 | 5 U | ## Symbol Key MCL means maximum contaminant level ug/l means micrograms per liter and all analysis results as reported as ug/l SVOC means semi-volatile organic chemical VOC means volatile organic chemical U after a number means not detected, but the result reported is the lab detection limit R after a number means the data may not be valid J after a number means the substance was positively identified and the numerical value is an approximate concentration of the substance in the sample